1)You can find
mod [3(cos30-isin30)]m
conjugate [3(cos30-isin30)]c
inverse [3(cos30-isin30)]i
2)And you can do
Addition [3(cos30-isin30)]+[4-i7]
Subtraction [3(cos30-isin30)]-[4-i7]
Multiplication [3(cos30-isin30)]*[4-i7]
Division [3(cos30-isin30)]/[4-i7]
any power [3(cos30-isin30)]p[7]
any number of roots [3(cos30-isin30)]r[5]
You can prefer polar calculations or normal. You can do calculations with Degree or Radiant.